Textbook of Gastroenterology
4th Edition

1. Furness JB, Kunze WAA, Clerc N. Nutrient tasting and signaling mechanisms in the gut II. The intestine as a sensory organ: neural, endocrine, and immune responses. Am J Physiol 1999;277:G922.
2. Willis WD, Coggeshall RE. Sensory mechanisms of the spinal cord. New York: Plenum, 1991.
3. Hirst GDS, Holman ME, Spence I. Two types of neurones in the myenteric plexus of duodenum in the guinea-pig. J Physiol (Lond) 1974;236:303.
4. Morita K, North RA. Significance of slow synaptic potentials for transmission of excitation in guinea-pig myenteric plexus. Neuroscience 1985;14:661.
5. Clerc N, Furness JB, Kunze WAA, Thomas EA, Bertrand PP. Long term effects of synaptic activation at low frequency on excitability of myenteric AH neurons. Neuroscience 1999;90:279.
6. Hirst GDS, Johnson SM, van Helden DF. The calcium current in a myenteric neurone of the guinea-pig ileum. J Physiol (Lond) 1985;361:297.
7. North RA. The calcium-dependent slow after-hyperpolarization in myenteric plexus neurone with tetrodotoxin-resistant action potentials. Br J Pharmacol 1973;49:709.
8. Rugiero F, Gola M, Kunze WAA, Reynaud J-C, Furness JB, Clerc N. Analysis of whole cell currents by patch clamp of guinea-pig myenteric neurones in intact ganglia. J Physiol (Lond) 2002;538:447.
9. Furness JB, Kunze WAA, Bertrand PP, Clerc N, Bornstein JC. Intrinsic primary afferent neurons of the intestine. Prog Neurobiol 1998;54:1.
10. Vogalis F, Harvey JR, Furness JB. TEA- and apamin-resistant KCa channels in guinea-pig myenteric neurons: slow AHP channels. J Physiol (Lond) 2002;538:421.
11. Hirst GDS, Johnson SM, van Helden DF. The slow calcium-dependent potassium current in a myenteric neurone of the guinea-pig ileum. J Physiol (Lond) 1985;361:315.
12. Galligan JJ, North RA, Tokimasa T. Muscarinic agonists and potassium currents in guinea-pig myenteric neurones. Br J Pharmacol 1989;96:193.
13. Kunze WAA, Bornstein JC, Furness JB. Identification of sensory nerve cells in a peripheral organ, the intestine of a mammal. Neuroscience 1995;66:1.
14. Bertrand PP, Kunze WAA, Bornstein JC, Furness JB, Smith ML. Analysis of the responses of myenteric neurons in the small intestine to chemical stimulation of the mucosa. Am J Physiol 1997;273:G422.
15. Kirchgessner AL, Liu MT, Gershon MD. In situ identification and visualization of neurons that mediate enteric and enteropancreatic reflexes. J Comp Neurol 1996;371:270.
16. Neya T, Mizutani M, Yamasato T. Role of 5-HT3 receptors in peristaltic reflex elicited by stroking the mucosa in the canine jejunum. J Physiol (Lond) 1993;471:159.
17. Foxx Orenstein AE, Kuemmerle JF, Grider JR. Distinct 5-HT receptors mediate the peristaltic reflex induced by mucosal stimuli in human and guinea pig intestine. Gastroenterology 1996;111:1281.
18. Grider JR, Kuemmerle JF, Jin JG. 5-HT released by mucosal stimuli initiates peristalsis by activating 5-HT4/5-HT1p receptors on sensory CGRP neurons. Am J Physiol 1996;270:G778.
19. Kirchgessner AL, Tamir H, Gershon MD. Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity. J Neurosci 1992;12:235.
20. Kunze WAA, Furness JB, Bertrand PP, Bornstein JC. Intracellular recording from myenteric neurons of the guinea-pig ileum that respond to stretch. J Physiol (Lond) 1998;506:827.
21. Kunze WAA, Clerc N, Furness JB, Gola M. The soma and neurites of primary afferent neurons in the guinea-pig intestine respond differentially to deformation. J Physiol (Lond) 2000;526:375.
22. Bülbring E. Correlation between membrane potential, spike discharge and tension in smooth muscle. J Physiol (Lond) 1955;128:200.
23. Wood JD. Electrical discharge of single enteric neurons of guinea-pig small intestine. Am J Physiol 1973;225:1107.
24. Gabella G, Trigg P. Size of neurons and glial cells in the enteric ganglia of mice, guinea-pigs, rabbits and sheep. J Neurocytol 1984;13:49.
25. Pan H, Gershon MD. Activation of intrinsic afferent pathways in submucosal ganglia of the guinea pig small intestine. J Neurosci 2000;20:3295.
26. Bertrand PP, Kunze WAA, Bornstein JC, Furness JB. Electrical mapping of the projections of intrinsic primary afferent neurons to the mucosa of the guinea-pig small intestine. Neurogastroenterol Motil 1998;10:533.
27. Song ZM, Brookes SJH, Costa M. Identification of myenteric neurons which project to the mucosa of the guinea-pig small intestine. Neurosci Lett 1991;129:294.
28. Song ZM, Brookes SJH, Costa M. All calbindin-immunoreactive myenteric neurons project to the mucosa of the guinea-pig small intestine. Neurosci Lett 1994;180:219.
29. Kunze WAA, Furness JB, Bornstein JC. Simultaneous intracellular recordings from enteric neurons reveal that myenteric AH neurons transmit via slow excitatory postsynaptic potentials. Neuroscience 1993;55:685.
30. Pompolo S, Furness JB. Ultrastructure and synaptic relationships of calbindin-reactive, Dogiel type II neurons in myenteric ganglia of guinea-pig small intestine. J Neurocytol 1988;17:771.
31. Kunze WAA, Furness JB. The enteric nervous system and regulation of intestinal motility. Annu Rev Physiol 1999;61:117.
32. Hukuhara T. Der Einfluss des Atropins auf die Dunndarmbewegung. Tohoku J Exp Med 1951;54:21.
33. Furness JB, Costa M. The enteric nervous system. Edinburgh: Churchill Livingstone, 1987.
34. Yuan SY, Furness JB, Bornstein JC, Smith TK. Mucosal distortion by compression elicits polarized reflexes and enhances responses of the circular muscle to distension in the small intestine. J Auton Nerv Syst 1991;35:219.
35. Frieling T, Wood JD, Cooke HJ. Submucosal reflexes: distention-evoked ion transport in the guinea-pig distal colon. Am J Physiol 1992;263:G91.

36. Cooke HJ, Reddix RA. Neural regulation of intestinal electrolyte transport. In: Johnson LR, ed. Physiology of the gastrointestinal tract. New York: Raven Press, 1994:2083.
37. Flemström G. Gastric and duodenal mucosal secretion of bicarbonate. In: Johnson LR, ed. Physiology of the gastrointestinal tract. New York: Raven Press, 1994:1285.
38. Cassuto J, Siewert A, Jodal M, Lundgren O. The involvement of intramural nerves in cholera toxin–induced intestinal secretion. Acta Physiol Scand 1983;117:195.
39. Diener M, Rummel W. Distension-induced secretion in the rat colon: mediation by prostaglandins and submucosal neurons. Eur J Pharmacol 1990;178:47.
40. Vanner S, Jiang MM, Surprenant A. Mucosal stimulation evokes vasodilation in submucosal arterioles by neuronal and nonneuronal mechanisms. Am J Physiol 1993;264:G202.
41. Vanner S, Surprenant A. Neural reflexes controlling intestinal microcirculation. Am J Physiol 1996;271:G223.
42. Powley TL, Holst MC, Boyd DB, Kelly JB. Three-dimensional reconstructions of autonomic projections to the gastrointestinal tract. Microsc Res Tech 1994;29:297.
43. Coffin B, Azpiroz F, Malagelada JR. Somatic stimulation reduces perception of gut distention in humans. Gastroenterology 1994;107:1636.
44. Ford MJ, Camilleri M, Zinsmeister AR, Hanson RB. Psychosensory modulation of colonic sensation in the human transverse and sigmoid colon. Gastroenterology 1995;109:1772.
45. Accarino AM, Azpiroz F, Malagelada JR. Attention and distraction: effects on gut perception. Gastroenterology 1997;113:415.
46. Sengupta JN, Gebhart GF. Gastrointestinal afferent fibers and sensation. In: Johnson LR, ed. Physiology of the gastrointestinal tract. New York: Raven Press, 1994:483.
47. Berthoud HR, Powley TL. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J Comp Neurol 1992;319:261.
48. Phillips RJ, Baronowsky EA, Powley TL. Afferent innervation of gastrointestinal tract smooth muscle by the hepatic branch of the vagus. J Comp Neurol 1997;384:248.
49. Clerc N, Condamin M. Selective labelling of vagal sensory nerve fibers in the lower esophageal sphincter with anterogradely transported WGA-HRP. Brain Res 1987;424:216.
50. Berthoud HR, Kressel M, Raybould HE, Neuhuber WL. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI tracing. Anat Embryol 1995;191:203.
51. Wang FB, Powley TL. Topographic inventories of vagal afferents in gastrointestinal muscle. J Comp Neurol 2000;421:302.
52. Phillips RJ, Powley TL. Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res Rev 2000;34:1.
53. Lawrentjew BJ. Experimentelle-morphologische Studien über den feineren Bau des autonomen Nervensystems. II. Über den Aufbau der Ganglien der Speiserohre nebst einigen Bemerkungenüber das Vorkommen und die Verteilung zweier Arten von Nervenzellen in dem autonomen Nervensystem. Z Mikrosk Anat Forsch 1929;18:233.
54. Rodrigo J, De Felipe J, Robles Chillida EM, Pérez Antón JA, Mayo I, Gómez A. Sensory vagal nature and anatomical access paths to esophagus laminar nerve endings in myenteric ganglia. Determination by surgical degeneration methods. Acta Anat 1982;112:47.
55. Zagorodnyuk VP, Brookes SJH. Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J Neurosci 2000;20:6249.
56. Berthoud HR, Patterson LM, Neumann F, Neuhuber WL. Distribution and structure of vagal afferent intraganglionic laminar endings IGLEs in the rat gastrointestinal tract. Anat Embryol 1997;195:183.
57. Neuhuber WL, Kressel M, Stark A, Berthoud HR. Vagal efferent and afferent innervation of the rat esophagus as demonstrated by anterograde DiI and DiA tracing: focus on myenteric ganglia. J Auton Nerv Syst 1998;70:92.
58. Neuhuber WL. Sensory vagal innervation of the rat esophagus and cardia: a light and electron microscopic anterograde tracing study. J Auton Nerv Syst 1987;20:243.
59. Kressel M, Berthoud HR, Neuhuber WL. Vagal innervation of the rat pylorus: an anterograde tracing study using carbocyanine dyes and laser scanning confocal microscopy. Cell Tissue Res 1994;275:109.
60. Green T, Dockray GJ. Characterization of the peptidergic afferent innervation of the stomach in the rat, mouse and guinea-pig. Neuroscience 1988;25:181.
61. Clerc N, Mazzia C. Morphological relationships of choleragenoid horseradish peroxidase-labeled spinal primary afferents with myenteric ganglia and mucosal associated lymphoid tissue in the cat esophagogastric junction. J Comp Neurol 1994;347:171.
62. Furness JB, Lloyd KCK, Sternini C, Walsh JH. Evidence that myenteric neurons of the gastric corpus project to both the mucosa and the external muscle: myectomy operations on the canine stomach. Cell Tissue Res 1991;266:475.
63. Gibbins IL, Furness JB, Costa M, MacIntyre I, Hillyard CJ, Girgis S. Co-localization of calcitonin gene related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea-pigs. Neurosci Lett 1985;57:125.
64. Costa M, Furness JB, Llewellyn Smith IJ, Cuello AC. Projections of substance P-containing neurons within the guinea-pig small intestine. Neuroscience 1981;6:411.
65. Furness JB, Papka RE, Della NG, Costa M, Eskay RL. Substance P-like immunoreactivity in nerves associated with the vascular system in guinea-pigs. Neuroscience 1982;7:447.
66. Mazzia C, Clerc N. Ultrastructural analysis of spinal primary afferent fibers within the circular muscle of the cat lower esophageal sphincter. Histochem Cell Biol 2000;113:235.
67. Mei N. Gastrointestinal chemoreception and its behavioural role. In: Booth DA, ed. Neurophysiology of ingestion. Oxford: Pergamon Press, 1993:44.
68. Grundy D. Speculations on the structure/function relationship for vagal and splanchnic afferent endings supplying the gastrointestinal tract. J Auton Nerv Syst 1988;22:175.
69. Grundy D, Scratcherd T. Sensory afferents from the gastrointestinal tract. In: Wood JD, ed. Handbook of physiology, vol 16: the gastrointestinal system. Washington, DC: American Physiological Society, 1989:593.
70. Iggo A. Gastrointestinal tension receptors with unmyelinated afferent fibres in the vagus of the cat. Q J Exp Physiol 1957;42:130.
71. Blackshaw LA, Grundy D, Scratcherd T. Vagal afferent discharge from gastric mechanoreceptors during contraction and relaxation of ferret corpus. J Autonom Nerv Syst 1987;18:19.
72. Sengupta JN, Kauvar D, Goyal RK. Characteristics of vagal esophageal tension-sensitive afferent fibres in the opossum. J Neurophysiol 1989;61:1001.
73. Ozaki N, Sengupta JN, Gebhart GF. Mechanosensitive properties of gastric vagal afferent fibers in the rat. J Neurophysiol 1999;82:2210.
74. Pan HL, Longhurst JC. Ischaemia-sensitive sympathetic afferents innervating the gastrointestinal tract function as nociceptors in cats. J Physiol (Lond) 1996;492:841.
75. Sengupta JN, Saha JK, Goyal RJ. Differential sensitivity to bradykinin of esophageal distension-sensitive mechanoreceptors in vagal and sympathetic afferents of the opossum. J Neurophysiol 1992;68:1053.
76. Jänig W. Neurobiology of visceral afferent neurons: neuroanatomy, functions, organ regulations and sensations. Biol Psychol 1996;42:29.
77. Gebhart GF, Sengupta JN. On visceral nociceptors. In: Besson JM, Guilbaud G, Ollat H, eds. Peripheral neurons in nociception: physiopharmacological aspects. Paris: John Libbey Eurotext, 1994:23.
78. Su X, Gebhart GF. Mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat are polymodal in character. J Neurophysiol 1998;80:2632.
79. Leek BF. Abdominal and pelvic visceral receptors. Br Med Bull 1977;33:163.
80. Cottrell DF, Iggo A. The responses of duodenal tension receptors in sheep to pentagastrin, cholecystokinin and some other drugs. J Physiol (Lond) 1984;354:477.
81. Cottrell DF, Iggo A. Mucosal enteroceptors with vagal afferent fibers in the proximal duodenum of sheep. J Physiol (Lond) 1984;354:497.

82. Mei N, Garnier L. Osmosensitive vagal receptors in the small intestine of the cat. J Auton Nerv Syst 1986;16:159.
83. Blackshaw LA, Grundy D. Effects of cholecystokinin CCK-8 on two classes of gastroduodenal vagal afferent fibre. J Auton Nerv Syst 1990;31:191.
84. El Ouazzani T, Mei N. Electrophysiologic properties and role of vagal thermoreceptors of lower esophagus and stomach of cat. Gastroenterology 1982;83:995.
85. Jeanningros R. Vagal unitary responses to intestinal amino acid infusions in the anesthetized cat: a putative signal for protein-induced satiety. Physiol Behav 1982;28:9.
86. Mèlone J. Vagal receptors sensitive to lipids in the small intestine of the cat. J Auton Nerv Syst 1986;17:231.
87. Clarke GD, Davison JS. Mucosal receptors in the gastric antrum and small intestine of the rat with afferent fibres in the cervical vagus. J Physiol (Lond) 1978;284:55.
88. Cottrell DF. Mechanoreceptors of the rabbit duodenum. Q J Exp Physiol 1984;69:677.
89. Raybould HE, Holzer H. Dual capsaicin-sensitive afferent pathways mediate inhibition of gastric emptying in rat induced by intestinal carbohydrate. Neurosci Lett 1992;141:236.
90. Zhu JX, Wu XY, Owyang C, Li Y. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol (Lond) 2001;530:431.
91. Blackshaw LA, Grundy D. Effects of 5-hydroxytryptamine 5-HT on the discharge of vagal mechanoreceptors and motility in the upper gastrointestinal tract of the ferret. J Auton Nerv Syst 1993;45:51.
92. Blackshaw LA, Grundy D. Effects of 5-hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret. J Auton Nerv Syst 1993;45:41.
93. Grundy D, Bagaev VA, Hillsley K. Inhibition of gastric mechanoreceptor discharge by cholecystokinin in the rat. Am J Physiol 1995;268:G355.
94. Richards W, Hillsley K, Eastwood C, Grundy D. Sensitivity of vagal mucosal afferents to cholecystokinin and its role in afferent signal transduction in the rat. J Physiol (Lond) 1996;497:473.
95. Raybould HE. Capsaicin-sensitive vagal afferents and CCK in inhibition of gastric motor function induced by intestinal nutrients. Peptides 1991;12:1279.
96. Hölzer HH, Turkelson CM, Solomon TE, Raybould HE. Intestinal lipid inhibits gastric emptying via CCK and a vagal capsaicin-sensitive afferent pathway in rats. Am J Physiol 1994;267:G625.
97. Li Y, Hao Y, Zhu J, Owyang C. Serotonin released from intestinal enterochromaffin cells mediates luminal non–cholecystokinin-stimulated pancreatic secretion in rats. Gastroenterology 2000;118:1197.
98. Lin HC, Zhao X-T, Wang L, Wong H. Fat-induced ileal brake in the dog depends on peptide YY. Gastroenterology 1996;110:1491.
99. Zhao X-T, Wang L, Lin HC. Slowing of intestinal transit by fat depends on naloxone-blockable efferent, opioid pathway. Am J Physiol 2000;278:G866.
100. Mazzia C, Clerc N. Ultrastructural relationships of spinal primary afferent fibers with neuronal and nonneuronal cells in the myenteric plexus of the cat esophago-gastric junction. Neuroscience 1997;80:925.
101. Barthó L, Szolcsányi J. The mechanism of the motor response to periarterial nerve stimulation in the small intestine of the rabbit. Br J Pharmacol 1980;70:193.
102. Fandriks L, Jonson C, Delbro D. Blockade of substance P receptors inhibits non-nicotinic, non-adrenergic colonic contractions induced by stimulation of the lumbar sympathetic nerves to the feline large intestine. Acta Physiol Scand 1985;124:565.
103. Thiefin G, Raybould HE, Leung FW, Taché Y, Guth PH. Capsaicin-sensitive afferent fibers contribute to gastric mucosal blood flow response to electrical vagal stimulation. Am J Physiol 1990;259:1037.
104. Holzer P, Livingston EH, Guth P. Neural, metabolic, physical and endothelial factors in the regulation of the gastric circulation. In: Johnson LR, ed. Physiology of the gastrointestinal tract. New York: Raven Press, 1994:1311.
105. Vanner S, MacNaughton WK. Capsaicin-sensitive afferent nerves activate submucosal secretomotor neurons in guinea pig ileum. Am J Physiol 1995;269:G203.
106. Takaki M, Nakayama S. Effects of mesenteric nerve stimulation on the electrical activity of myenteric neurons in the guinea pig ileum. Brain Res 1988;442:351.
107. Castagliulo I, Lamont JT, Letourneau R, et al. Neuronal involvement in the intestinal effects of Clostridium difficile toxin A and Vibrio cholerae enterotoxin in rat ileum. Gastroenterology 1994;107:657.
108. Neya T, Mizutani M, Yanagihara M, Nakayama S. Antidromic activation of vagal and sympathetic afferents does not produce intestinal contractions in dogs. Brain Res 1990;517:64.
109. Furness JB, Clerc N, Gola M, Kunze WAA, Fletcher EL. Identification of component neurons and organisation of enteric nerve circuits. In: Krammer HJ, Singer MV, eds. Neurogastroenterology—from the basics to the clinics. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2000:134.
110. Ness TJ, Gebhart GF. Inflammation enhances reflex and spinal neuron responses to noxious visceral stimulation in rats. Am J Physiol 2001;280:G649.
111. Ray BS, Neill CL. Abdominal visceral sensation in man. Ann Surg 1947;126:709.
112. Bingham JR, Ingelfinger FJ, Smithwick RH. The effect of sympathectomy on abdominal pain in man. Gastroenterology 1950;15:18.
113. Clerc N, Mei N. Thoracic esophageal mechanoreceptors connected with fibers following sympathetic pathways. Brain Res Bull 1983;10:1.
114. Sengupta JN, Saha JK, Goyal RK. Stimulus-response function studies of esophageal mechanosensitive nociceptors in sympathetic afferents of opossum. J Neurophysiol 1990;64:796.
115. Woodworth RS, Sherrington CS. A pseudaffective reflex and its spinal path. J Physiol (Lond) 1904;31:234.
116. Camilleri M, Choi MG. Review article: irritable bowel syndrome. Aliment Pharmacol Ther 1997;11:3.
117. Munakata J, Naliboff B, Harraf F, et al. Repetitive sigmoid stimulation induces rectal hyperalgesia in patients with irritable bowel syndrome. Gastroenterology 1997;112:55.
118. Buéno L, Fioramonti J, Garcia-Villar R. Pathobiology of visceral pain: molecular mechanisms and therapeutic implications III. Visceral afferent pathways: a source of new therapeutic targets for abdominal pain. Am J Physiol 2000;278:G670.
119. Connell AM, Jones FA, Rowlands EN. Motility of the pelvic colon. Part IV. Abdominal pain associated with colonic hypermotility after meals. Gut 1965;6:105.
120. Kellow JE, Eckersley GM, Jones MP. Enhanced perception of physiological intestinal motility in the irritable bowel syndrome. Gastroenterology 1991;101:1621.
121. Hawthorn J, Ostler KJ, Andrews PL. The role of the abdominal visceral innervation and 5-hydroxytryptamine M-receptors in vomiting induced by the cytotoxic drugs cyclophosphamide and cis-platin in the ferret. Q J Exp Physiol 1988;73:7.
122. Milano S, Grélot L, Chen Z, Bianchi AL. Vagal-induced vomiting in decerebrate cat is not suppressed by specific 5-HT3 receptor antagonists. J Auton Nerv Syst 1990;31:109.
123. Cubeddu LX, O’Connor DT, Hoffmann I, Parmer RJ. Plasma chromogranin A marks emesis and serotonin release associated with dacarbazine and nitrogen mustard but not with cyclophosphamide-based chemotherapies. Br J Cancer 1995;72:1033.
124. Walton SM. Advances in use of the 5-HT3 receptor antagonists. Exp Options Pharmacother 2000;1:207.
125. Fujii Y, Tanaka H, Kawasaki T. Preoperative oral granisetron for the prevention of postoperative nausea and vomiting after breast surgery. Eur J Surg 2001;167:184.
126. Gonzalez MF, Deutsch JA. Vagotomy abolishes cues of satiety produced by gastric distension. Science 1981;212:1283.
127. Deutsch JA. Dietary control and the stomach. Prog Neurobiol 1983;20:313.
128. Phillips RJ, Powley TL. Gastric volume detection after selective vagotomies in rats. Am J Physiol 1998;271:R766.
129. Mathis C, Moran TH, Schwartz GJ. Load-sensitive rat gastric vagal afferents encode volume but not gastric nutrients. Am J Physiol 1998;274:R280.

130. Smith GP. The controls of eating: brain meanings of food stimuli. Prog Brain Res 2000;122:173.
131. Hölzer HH, Raybould HE. Vagal and splanchnic sensory pathways mediate inhibition of gastric motility induced by duodenal distension. Am J Physiol 1992;262:G603.
132. Asakawa A, Inui A, Kaga T, et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 2001;120:337.
133. Cannon WB, Lieb CW. The receptive relaxation of the stomach. Am J Physiol 1911;29:267.
134. Abrahamsson H, Jansson G. Vago-vagal gastro-gastric relaxation in the cat. Acta Physiol Scand 1973;88:289.
135. Andrews PLR, Grundy D, Scratcherd T. Reflex excitation of antral motility induced by gastric distension in the ferret. J Physiol (Lond) 1980;298:79.
136. Forster ER, Green T, Elliot M, Bremner A, Dockray GJ. Gastric emptying in rats: role of afferent neurons and cholecystokinin. Am J Physiol 1990;258:G552.
137. Li Y, Owyang C. Endogenous cholecystokinin stimulates pancreatic enzyme secretion via vagal afferent pathway in rats. Gastroenterology 1994;107:525.
138. Li Y, Owyang C. Pancreatic secretion evoked by cholecystokinin and non–cholecystokinin-dependent duodenal stimuli via vagal afferent fibres in the rat. J Physiol (Lond) 1996;494:773.
139. Blair EL, Brown JC, Harper AA, Scratcherd T. A gastric phase of pancreatic secretion. J Physiol (Lond) 1966;184:812.
140. Code CF, Marlett JA. The interdigestive myoelectric complex of the stomach and small bowel of dogs. J Physiol (Lond) 1975;246:289.
141. Sengupta JN, Gebhart GF. Mechanosensitive afferent fibers in the gastrointestinal and lower urinary tracts. In: Gebhart GF, ed. Visceral pain: progress in pain research and management, vol 5. Seattle: IASP Press, 1995:75.
142. Gonella J, Bouvier M, Blanquet F. Extrinsic nervous control of motility of small and large intestines and related sphincters. Physiol Rev 1987;67:902.
143. Christensen J. The motility of the colon. In: Johnson LR, ed. Physiology of the gastrointestinal tract. New York: Raven Press, 1994:991.
144. Furness JB, Costa M. The adrenergic innervation of the gastrointestinal tract. Ergeb Physiol 1974;69:1.
145. Szurszewski JH, Miller SM. Physiology of prevertebral ganglia. In: Johnson LR, ed. Physiology of the gastrointestinal tract. New York: Raven Press, 1994:795.
146. Holzer P. Neural emergency system in the stomach. Gastroenterology 1998;114:823.
147. Holzer P, Sametz W. Gastric mucosal protection against ulcerogenic factors in the rat mediated by capsaicin-sensitive afferent neurons. Gastroenterology 1986;91:975.
148. Uchida M, Yano S, Watanabe K. Involvement of CGRP, substance P and blood circulation in aggravating mechanism of absolute ethanol-induced antral lesions by capsaicin treatment in rats. Jpn J Pharmacol 1993;62:123.
149. Brzozowski T, Konturek PC, Sliwowski Z, Pytko-Polonczyk J, Szlachcic A, Drozdowicz D. Role of capsaicin-sensitive sensory nerves in gastroprotection against acid-independent and acid-dependent ulcerogens. Digestion 1996;57:424.
150. Holzer P, Livingston EH, Saria A, Guth PH. Sensory neurons mediate protective vasodilation in rat gastric mucosa. Am J Physiol 1991;260:G363.
151. Merchant NB, Goodman J, Dempsey DT, Milner RE, Ritchie WP. The role of calcitonin gene–related peptide and nitric oxide in gastric mucosal hyperemia and protection. J Surg Res 1995;58:344.
152. Lambrecht N, Burchert M, Respondek M, Müller KM, Peskar BM. Role of calcitonin gene–related peptide and nitric oxide in the gastroprotective effect of capsaicin in the rat. Gastroenterology 1993;104:1371.
153. Li DS, Raybould HE, Quintero E, Guth PH. Role of calcitonin gene–related peptide in gastric hyperemic response to intragastric capsaicin. Am J Physiol 1991;261:G657.
154. Stroff T, Plate S, Seyed EJ, Ehrlich K-H, Respondek M, Peskar BM. Tachykinin-induced increase in gastric mucosal resistance: role of primary afferent neurons, CGRP, and NO. Am J Physiol 1996;271:G1017.
155. Whittle BJR, Lopez Belmonte J, Moncada S. Regulation of gastric mucosal integrity by endogenous nitric oxide: interactions with prostanoids and sensory neuropeptides in the rat. Br J Pharmacol Chemother 1990;99:607.
156. Reinshagen M, Patel A, Sottili M, French S, Sternini C, Eysselein VE. Action of sensory neurons in an experimental rat colitis model of injury and repair. Am J Physiol 1996;270:G79.
157. Kuntz A, Saccomanno G. Reflex inhibition of intestinal motility mediated through decentralized prevertebral ganglia. J Neurophysiol 1944;7:163.
158. Crowcroft PJ, Holman ME, Szurszewski JH. Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea-pig. J Physiol (Lond) 1971;219:443.
159. Kuramoto H, Furness JB. Distribution of nerve cells that project from the small intestine to the coeliac ganglion in the guinea-pig. J Auton Nerv Syst 1989;27:241.
160. Messenger JP, Furness JB. Distribution of enteric nerve cells that project to the coeliac ganglion of the guinea-pig. Cell Tissue Res 1992;269:119.
161. Messenger JP, Furness JB. Distribution of enteric nerve cells projecting to the superior and inferior mesenteric ganglia of the guinea-pig. Cell Tissue Res 1993;271:333.
162. Furness JB, Koopmans HS, Robbins HL, Lin HC. Identification of intestinofugal neurons projecting to the coeliac and superior mesenteric ganglia in the rat. Auton Neurosci Basic Clin 2000;83:81.
163. Timmermans JP, Barbiers M, Scheuermann DW, Stach W, Adriaensen D, De Groodt Lasseel MHA. Occurrence, distribution and neurochemical features of small intestinal neurons projecting to the cranial mesenteric ganglion in the pig. Cell Tissue Res 1993;272:49.
164. Mann PT, Furness JB, Pompolo S, Mäder M. Chemical coding of neurons that project from different regions of intestine to the coeliac ganglion of the guinea pig. J Auton Nerv Syst 1995;56:15.
165. Sharkey KA, Lomax AEG, Bertrand PP, Furness JB. Electrophysiology, shape and chemistry of intestinofugal neurons projecting from guinea pig distal colon to inferior mesenteric ganglia. Gastroenterology 1998;115:909.